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Forward

This progress report contains the following two documents.

• Efficient Finite Element Simulation of Slot Antennas

Using Prismatic Elements.
This document describes the implementation of prismatic

elements for slot antenna and slot radome simulations. Results

are given for slot radomes in comparison with measurements
and for spiral antennas. In the latter case, a slot loop is used for

code validation and a number of spiral antenna patterns are
included to demonstrate the improved gain, CP characteristics

and bandwidth of this antenna. The development of the

prismatic elements and implementation details are given in our

earlier grant report 030601-5-T

• Application and Design Guidelines of the PML Absorber
for Finite Element Simulations of Microwave Packages.

This document first gives a review of the anisotropic perfectly

matched layer(PML) for mesh truncation which was originally

described in our earlier report 030601-5-T. The performance of

the PML is then examined for a finite simulation of microwave

circuit structures. Our goal in future studies is to employ the

finite element method with the PML for the simulation of

antenna+microwave circuit integrated structures. In this manner,

the feeding network and antenna elements are treated as a

single system rather than individually as done in the past.
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Abstract

A hybrid finite element - boundary integral (FE-BI) simulation

technique is discussed to treat narrow slot antennas etched on a planar

platform. Specifically, the prismatic elements are used to reduce the

redundant sampling rates and ease the mesh generation process. Nu-

merical results for an antenna slot and frequency selective surfaces are

presented to demonstrate the validity and capability of the technique.

1 Introduction

It has been reported that a hybrid finite element-boundary integral tech-

nique [Jin, et. al. 1991, Silvester and Pelosi (1994)] can be employed for

characterizing conformal antennas of arbitrary shape [Gong, et. al. (1994)].

Indeed, planar/non-planar, rectangular/non-rectangular designs, ring slot

or spiral slot antennas with probe, coax cable or microstrip line feeds can be

simulated with this formulation. This is because of the geometrical adapt-

ability of tetrahedral elements used for the implementation. However, in

practice, certain configurations require extremely high sampling rates due

to the presence of fine geometrical details. Among them are a variety of

slot antennas (spirals, rings, slot spirals, cross slots, log-periodic slots, etc.),

where the slot width is much smaller than the other dimensions (cavity di-

ameter or inter-distance of slots). In these cases, the mesh is extremely

dense (with over 50, 100 or even higher samples per wavelength), whereas

typical discretizations involve only 10-20 elements per wavelength. This



dense sampling rate is especially severe for 3-D tetrahedral meshes, where

the geometrical details usually distort the tetrahedrals. The numerical sys-

tem assembled from this type of mesh often leads to large system conditions

due to the degraded mesh quality. Also, mesh generation is tedious and the

solution CPU time is unacceptably large.

In this paper, we propose a finite element-boundary integral formula-

tion using edge-based triangular prism elements. It can be shown that this

element choice is ideally suited for planar antenna configurations, including

spirals, circular and triangular slots. Among the many advantages of the

prismatic elements, the most important is the simplicity of mesh generation.

Also, much smaller number of unknowns is required for an accurate and ef-

ficient modeling of complex geometries. Below, we begin by first outlining

the finite element-boundary integral (FE-BI) formulation for slot antenna

modeling. A new, physically meaningful, set of edge-based functions for

prisms is then presented to generate the discrete system of equations. The

final section of the paper gives results for antenna radiation and transmission

through frequency selective surfaces. Comparisons with reference and mea-

sured data are given and the efficiency of the implementation is discussed.

2 Formulation

Consider the cavity-backed slot antenna shown in Fig. 1 where the cavity

is recessed in a ground plane. To solve for the E-field inside and on the

aperture of the cavity, a standard approach is to extremize the functional

1//iv _-' E) ko2_E E}dVF(E) = _ {(V×E). .(V× - •

+ jjj.
jkoZo [[ E. (H × _)dS (1)+

.I JS o +S!

where _ and _ denote the relative tensor constitutive parameters of the cavity

medium, Z0 and k0 are the free space impedance and propagation constant,

respectively, So represents the aperture excluding the metallic portions and

Sf denotes the junction opening to the guided feeding structures. Also,
V_ is the volume occupied by the source(s) and H is the corresponding

magnetic field on So and S] whose outer normal is given by _. The explicit

knowledge of H in (1) is required over the surface So and S s (referred to

as mesh truncation surfaces) for a unique solution of E. Specifically, the
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Figure 1: Geometry of cavity-backed microstrip antennas

magnetic field H over So may be replaced in terms of E via a boundary

integral (BI) or absorbing boundary condition (ABC), whereas H on S/ is

determined on the basis of the given feeding structure. In this paper, we will

employ the boundary integral method [Jin, et. al., 1991] for truncating the

mesh, a technique commonly referred to as the finite element - boundary

integral (FE-BI) method. In the context of the FE-BI, H is represented by

the integral

H = H g° +//_ [_ × E(r')] • (](r, r') d_', (2)
0

where (_ is the electric dyadic Green's function of the second kind [Tai

(1994)] such that fi × (V × G) = 0 is satisfied on the (planar, spherical

or cylindrical) metallic platform. For the antenna problem shown in Fig. 1

where the platform is a planar ground plane, G becomes the half space

dyadic Green's function

( _ )e-jk0,,-r',(_ = 2jkoYo i+ VV 4_rlr- r,i, (3)

with r and r' being the observation and integration points, respectively, and

= _ + _) + _ is the unit dyad. In connection with our problem, i.e.



that of a cavityrecessedin a groundplane,Hg° is equal to the sum of the

incident and reflected fields for scattering computations, or zero for antenna

parameter evaluations.

To discretize the functional (1), we choose to subdivide the volume region

using prismatic elements as shown in Fig. 2 and Fig. 3, The field in each

of the prisms can be approximated using the linear edge-based expansion

[Nedelec (1980), Webb (1993), Bossavit (1989)]

e e [v1TfEelEe = Z EjVj = t Jet _,
j=l

(4)

where [V]¢ = [{Vx}, {V_}, {Vz}], and {E ¢} = {Ef, E_,...,E_} T. The vec-

tors {V_,}, u = x, y, z, are of dimension m = 9 and they simply represent the

x, y, z components of V_ associated with the jth edge of the eth element.

Since V_ are chosen to be edge-based functions, the unknown coefficients

Ey represent the average field along the jth edge of the eth element. A
corresponding representation for the aperture fields is

3

E(r) = _ E z S_(r) = _rSlT,__tE_,, (5)
i----1

where [S]s = [S_:,S_], and V(r) reduces to SS(r) when the position vector
is on the slot.

To generate the discrete system for Ey, (4) and (5) are substituted into

(1) and subsequently F(E) is differentiated with respect to each unknown

Ey. With the understanding that the surface field coefficients Ey are a

subset of Ey, we obtain

OFv _ N,, Ns N,, Ns= _-'_[A¢]{E ¢} + _--_[BS]IE _} + y_{K¢} + ElLs} = 0 (6)b- -j
e=l e=l e=l s

where the sums are over the total number of volume or surface elements. In

this, the matrix elements are given by

{K}e = I/Iv[VIe koZo Jiy + V X [/2; 1] Miy dv (8)
Jiz Miz



Figure 2: Illustration of tessellation using prisms
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0
[0--_{sy}T Oy,{Sx}T]}.Go(r,r')dSdS' (10)

= jkoZo//s[S] es{Ls}

where {ks} is removed in case of radiation problems and the same holds for

{Ke} when the scattering problem is considered.

3 Edge-Based Elements

Consider the right angled prism shown in Fig. 3 whose vertical (z-directed)

sides are parallel (right-angled prism). The height of the prism and the

triangle area will be designated as

h = ei" z × (r - ri), S _ = -_ei'li^_. × (r - ri) (12)

where ri denotes the location of the ith node, el is the unit vector along

the ith triangular edge, li denotes the length of this edge and r is any

position vector terminated inside the triangle. One way to obtain an edge-

based field representation for the prism is to utilize the nodal basis functions

[Zienkiewicz (1989)] and then apply the procedure discussed in [Nedelec

(1980), Bossavit and Mayergoyz (1989)]. However, an alternative and more

physically meaningful approach can be employed for the construction of the

edge elements. Referring to Fig. 2, it is evident that if r is in the x-y plane,

then S_ in (12) gives the area of another triangle 12'3' such that the lengths

of edges joining the nodes 2 - 3 and 2' - 3' are equal. With this definition

of r, the vector

Si = _ × (r --ri) (13)



hasa magnitudewhichisequalto theratioof theareasof thetriangle12'3'
to that of 123. We observethat (13) is simplythe edge-basedexpansion
for the triangular elements[Rao,et. al. (1982)]and is the appropriate
expansionto be usedin (5). The correspondingvolumetricbasisfunctions
can be obtained by inspection, viz.

Vi _ - Az_s i i = 1,2,3
Az

(zc + Az - z)
Vj = Az Si j=4,5,6

Vk = _(k k = 7,8,9

(14)

where _k is the triangle simplex coordinate associated with the kth prism

vertex at (xk, yk). As illustrated in Fig. 3, zc and h = Az represent the offset

coordinate and the prism height, respectively. When (14) are substituted

into (7), the resulting integrals can be evaluated in closed form as given in

the Appendix. However, the integrals resulting from the substitution of (13)

into (10) must be carried out numerically, except the self-cells which must

be performed analytically as discussed by Wilton (1981).

4 Applications

Radiation and scattering by an Annular Slot: To evaluate the ac-

curacy and efficiency of the prismatic mesh and the aforementioned imple-

mentation, we first consider the analysis of the narrow annular slot (0.75cm

wide) shown in Fig. 4. The slot is backed by a metallic circular cavity 24.7

cm in diameter and 3 cm deep. The FE-BI method is quite attractive for

this geometry because the slot is very narrow and most of the computational

requirements are shifted on the finite element portion of the system. The

calculation shown in Fig. 5 were carried out using the prismatic and tetra-

hedral elements [Gong, et. al. (1994)]. As seen, they overlay each other.

However, only 1024 prisms were needed for modeling the cavity, whereas
the number of the tetrahedral elements for this homogeneously filled cavity

were 2898 for acceptable element distortion. If a multi-layered structure was

considered, or a similar system condition was used as a criterion for mesh

generation, then much more tetrahedrals than prisms would be needed for

modeling such a structure. Moreover, the prismatic mesh is trivially gen-

erated given the slot outline. In contrast, substantial time investment is

required for generating and post-processing the tetrahedral mesh.

Frequency Selective Surfaces (FSS): FSS structures [Pelton and

Munk (1979), Mittra et.al. (1988)] are arrays of tightly packed periodic
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Figure 4: Geometry of the annular slot antenna backed by a cavity 23.7 cm

in diameter and 3 cm deep
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Figure 5: Scattering: Bistatic (co-pol) RCS patterns computed using the

tetrahedral FE-BI code and the prismatic FE-BI code. The normally in-

cident plane wave is polarized along the ¢ = 0 plane and the observation

cut is perpendicular to that plane. Radiation: X-pol and Co-pol radiation

patterns in the ¢ = 0 plane from the annular slot antenna shown in figure 4.
The solid lines are computed using the tetrahedral FE-BI code whereas the

dotted lines are computed using the prismatic FE-BI code. The excitation

probe is placed at the point (y=0) marked in figure 4.



elementswhicharetypicallysandwichedbetweendielectriclayers.Thepe-
riodic elementsmaybe of printed form or slot configurationsdesignedto
resonateat specificfrequencies.As such,they arepenetrablearoundthe
elementresonancesand becomecompletelyreflectingat other frequencies.
To meet bandwidthdesignspecifications,stackedelementarraysmay be
usedin conjunctionwith dielectriclayerloading.

Hereweshallconsidertheanalysisof FSSstructures(with slotelements)
via the FE-BI method. Becauseof the fine geometricaldetail associated
with the FSSsurface,thefiniteelementmethodhasyet to beappliedfor the
characterizationof FSSstructures,but useof prismaticelementsmakesthis
a mucheasiertask. Ofparticularinterestin FSSdesignis thedetermination
of thetransmissioncoefficientasa functionoffrequency,andsincethearray
is periodic,it sufficesto considerasinglecellof the FSS.Forcomputingthe
transmissioncoefficientT, the periodic cell is placed in a cavity as shown

in Fig. 6 and the structure is excited by a plane wave impinging at normal

incidence. Assuming that near resonance the wave transmitted through the

FSS screen will retain its TEM character, the transmission line concept can

be used to find the scattered field

aT 2
E s _

1 - aR

where T is the transmission coefficient of the FSS, R = 1 - T and a is the

reflection coefficient associated with the cavity base. To reduce the multiple

interactions within the cavity, it is appropriate to terminate the cavity with

some absorber, thus reducing the value of a to less than 0.1. Then, since R

is also small near resonance, a good approximation for T is

= 10log -_

and upon considering the next higher order cavity interactions, we have

- + [1-
A more direct and traditional computation of TdB would involve the place-

ment of the FSS element in a thick slot [Jin and Volakis (1991)]. However,

this requires enforcement of the boundary integral over the entire lower

surface of the slot, leading to a much more computationally intensive imple-

mentation.

The above FSS modeling approach was applied for a characterization

of single layer and multi-layer FSS structures. In both cases, the periodic
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Figure 6: Illustration of the setup for computing the FSS transmission co-

efficient Upper figure: periodic element (top view); Lower figure: periodic

element in cavity (cross-sectional view)
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element was a slot configuration. The geometry of the single layer periodic

element is shown in Fig. 6 and consists of a planar slot array on a dielectric

layer 0.0762 cm thick and having e_ = 4.5. The FE-BI calculation using

prismatic elements is given in Fig. 7. Clearly, our calculations are in good

agreement with the measurements and data based on the more traditional

PMM approach [Berrie (1995), Henderson (1983)].

The geometry of the multilayer radome considered in our study is given

in Fig. 8. The total thickness of the FSS was 6.3072cm and is comprised

of two slot arrays (of the same geometry) sandwiched within the dielectric

layers. For modeling purpose, a 1.54cm thick absorber is placed below the

FSS as shown in Fig 8. From the calculated results, it is seen that the

results generated by the FE-BI method are in good agreement with the

measurements.

Radiation Property study of Conformal Slot Spiral Antenna:

Consider a typical Archemidean slot-spiral antenna shown in Figure 9.
This antenna is built on a double-sided PCB with its two arms following the

expression: r = a8 + _, where a = 0.1333cm and/3 = 2.8595cm. One arm

can be determined from the other by rotating 180 ° counterclockwisely. It

is noted that this structure differs from the conventional design in that the

central portion of the spiral is not fabricated. The reasoning for it relies on

11
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Figure 8: Upper figure: geometry of the multilayer frequency selective sur-

face (FSS) used for modeling; lower figure: measured and calculated trans-

mission coefficient through the FSS structure
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thefactsthat theantennais designedwith a bandwidthlessthan30_, and
that the centralportionusuallyrequiresa carefulfabricationbecauseof the
geometricdetails,and still that the centralspacemaybeusedfor possibly
complexfeednetwork.Oneof our goalis to studythe effectof this spiral
shapeon its performance.

A benchmarktest modelis designatedto operatefrom 118MHz to 157
MHz. to replacethe conventionalprotrudingbladeantenna.The sizehow-
everismuchcompactwith its conformalityproperty.Our simulationmodel
is scaledby 1/8 to operateat 944MHzto 1256MHzwith the centerfre-
quency1100MHz.Thevaluesof a and fl above were determined based on

this frequency band and also the number of turns (4.5). The cavity is filled

with a dielectric slab (Er = 2.2) of 0.3 cm depth, corresponding to approxi-

mately 0.011 free space wavelength at the center frequency. The antenna's

directivity is anMyzed from the radiated pattern at lower, center and higher

frequencies and the results are tabulated in table 1.
Figure 10 - 12 show the radiation patterns for frequency 944, 1100 and

1256 MHz, respectively. The Eo and E¢ at the principle plane ¢ = 90 °

are plotted. It is understood that while the frequency varies, the antenna's

active region moves; thus this principle plane may not be the practical 'E-

plane' (although the two feeds are placed close to this plane). The optimum
axial ratio for the three cases are tabulated also in table 1, and it shows

that the spiral shape design really plays an important role to insure a good

quality radiation pattern. At both center and lower frequencies, less than 3
dB AR has been achieved. When the frequency increases, the active region

moves inwards to the center and becomes closer to the feeds where the EM

fields exhibits comparatively strong profile. The radiated pattern therefore

is most likely affected and this explains why the AR increases at the high

frequency. This can be readily improved by adding a couple of spiral turns

inside. It is seen, nevertheless, that a CP mode can be achieved within the

entire designated bandwidth and with a wide azimuthal angle (as wide as

60 ° in the optimum case). In practice, we notice that absorbing materials

may be needed to regulate the magnetic currents at the beginning or ends

of the slot spiral, especially when the number of turns is minimized. This

implementation however is not needed in simulation of this design work.
The further effects of the dielectric property, the depth and the size of

the substrate on antenna's radiation performance wiU be investigated to pro-

vide an optimized design for the conformal slot spiral. The miniaturization

technique will also be carefully studied and applied to the atenna design

with no trade off readiation performance.

13



Figure 9: Illustration of a typical 2-
armslot-spiral design
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Figure 11: Radiation Pattern at

f=0.944GHz (lower end of frequency

range). It can be seen that the ax-

ial ratio of the pattern becomes larger

compared to that at the center fre-

quency, but still remains within 3dB

for a wide angle range. This indicates
that the number of the outer turns in

the spiral contour design is most likely
sufficient.
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Figure 10: Radiation Pattern at

f=l.lGHz (center frequency design).

A good axial ratio is achieved up to

60 ° degree.
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Figure 12: Radiation Pattern at

f=l.256GHz (higher end of frequency

range). It can be seen that the ax-
ial ratio of the pattern is deteriorated

compared to those at the center fre-

quency and lower frequency. This cer-

tainly shows that the number of inner

loops still needs to be increased to in-

sure a good quality pattern.
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Table 1:
quencies

Frequency(GHz) 0.944 1.100 1.256
Gain (dB) 7.22 6.66 5.23

Axial Ratio (dB) 2.7 1.0 3

Comparisons of gain and axial ratio at differnent operating fre-

5 Conclusion

A hybrid finite element-boundary integral (FE-BI) formulation was pre-

sented for modeling narrow slots in metal backed cavities. Prismatic el-

ements were used in connection with the FE-BI implementation, and in

contrast to the tetrahedral elements, these offer several advantages. Among

them,low sampling rates are needed for generating meshes and the mesh gen-

eration process is substantially simplified. Other advantages of the prismatic
elements over the tetrahedral elements include better system conditions and

faster pre/post data processing.

The explicit expressions for FE-BI implementation of prismatic elements
were tabulated and numerical results for slot antennas and frequency selec-

tive surfaces were presented to demonstrate the validity and capability of

the technique.

Appendix

For FEM implementation, the following quantities are required

Pe_n = /veV X Vm" V x VndV (15)

Q_n = /v, Vm'V'_dV (16)

where the curls are given by

li

v x v_ = - 2soA------;[(x - z_)_+ (y - y_)9- _(z - zc)]

v × vj - 2S_z [(x - xj)_ + (y - yj)9 + _(zc+ zxz- z)]
1

V × V k -- 28 e [(Xk2 -- Xkl)X d- (Yk2 - Ykl)9]

i = 1,2,3

j = 4,5,6 (17)

k = 7,8,9

15



To thisend,wefollowthenotationdefinedin (13)and(14),wherei, i'=1,2,3

represent the top triangle edges, j, y=4,5,6 denote the bottom triangle edges

and k, k'=7,8,9 stand for the vertical three edges. It is found that. (16) and

(17) can be analytically evaluated and we tabulate the results as follows

Pii' = Cii' [Dii'Az + 3 Se( /kz)3 ]

Pjj, = Cjj, [Djj, Az + _Se(z2_z) 3]

az lk . [k,
Pkk' -- 4S c

Pij = Pji = -Cij [DijAz- _Se(Az) 3]

l,
Pik = Pki -- 4(S_)2

tj
Pjk = Pkj- 4(S_)2

(Az)3cii,Dii,
Qii, -- 3

(Az)3
QJJ' - 3 Cjj,Djj,

Qkk' = AzSCTkk '

Qij = Qji- (_Z)3cijDij--

Oik = Oki = ojk = okj =0

(18)

19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

where

Tkk, = 1/6 fork=k'; 1/12 fork¢k'

lilj (29)
Cij -- 4(SeAz)2

Dij = SXX - (xl + xj)SX + xlxjS e + SYY - (Yi + yj)SY + yiyjS e

The remaining quantities in the above list of the expressions are defined as

S_ = /s_ dxdy

S X = /s¢ x dxdy

SY = £¢ y dxdy

16



SXX = /s_ x2 dxdy

SYY = /s¢ Y2 dxdy

SXY = /s¢xydxdy

These integrals can be expressed in terms of the global coordinates of the

three nodes (Xi, 1_), (Xj, Yj), (Xm, Ym). Specifically, assuming that the three

nodes i,j and m of a triangle are in counterclockwise rotation, we then have,

J/s 1S e = _ dxdy =

1 xi yi ]

1 xj yj b1 xm Ym

SX

SY

SXX

SYY

SXY

--L e

xdxdy= _(Xi + Xj + Xm)

S _
y dxdy = -_- (Yi + Yj + Ym )

S _

], s°

/, 5xyexey= {(x,+xj + xm)(5 +_ + Ym)
+ (XiYi + XjYj + XmY_)}
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Application and Design Guidelines of the
PML Absorber for Finite Element

Simulations of Microwave Packages

J. Gong*, S. Legault*, Y. Botros* and J.L. Volakis*

Abstract

The recently introduced perfectly matched layer(PML) uniaxial absorber for fre-

quency domain finite element simulations has several advantages. In this paper we

present the application of PML for microwave circuit simulations along with design

guidelines to obtain a desired level of absorption. Different feeding techniques are also

investigated for improved accuracy.

I. Introduction

In the numerical simulation of 3D microwave circuits using partial differential approaches, it

is necessary to terminate the domain with some type of non-reflective boundary conditions.

When using frequency domain PDE formulations, such as the finite element method, the

standard approach is to employ some type of absorbing boundary conditions(ABCs) [1], [2],

[3]. Also, the use of infinite elements [4] or port conditions [5] have been investigated. All of

these mesh truncation methods require a priori knowledge of the dominant mode fields and,

to a great extent, their success depends on the purity of the assumed mode expansion at

the mesh truncation surface. Larger computational domains must therefore be used and the

accuracy of the technique in computing the scattering parameters could be compromised.

Recently, a new anisotropic (uniaxial) absorber [6] was introduced for truncating finite

element meshes. This absorber is reflectionless(i.e, perfectly matched at its interface) for all

incident waves, regardless of their incidence angle and propagation constants. As a result,

it can be placed very close to the circuit discontinuity and is particularly attractive for

terminating the computational domain of high density microwave circuits where complex

field distributions could be present.

Although the proposed uniaxial PML absorber has a perfectly matched interface, in

practice a finite metal-backed (say) layer must be used which is no longer reflectionless due

*Radiation Laboratory, Department of Electrical Engineering and Computer Science, University of Michi-

gan, Ann Arbor, MI 48109-2122
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to the presence of the pec (see Fig. 1). It is therefore of interest to optimize the absorptivilv of

the layer by proper selection of the parameters to achieve a given reflectivitv with a n_inimunl

layer thickness. In this paper, we present guidelines for implementing the PML absorber to

truncate finite element meshes in microwave circuit simulations. Example microwave circuit

calculations are also given to demonstrate the accuracy of the PML absorber, the FEM

simulator and the feed model. More examples will be presented at the conference.

II. Absorber Design

An extensive study was carried out using two-dimensional(see Fig. 1) and three dimensional

models (see Fig. 2) in order to optimize the absorber's performance using the minimum

thickness and discretization rate. As expected, the absorber's thickness, material properties

and the discretization rate all play an equally important role on the performance of the PML.

The typical field behavior interior to the absorber is shown in Fig. 3. As seen, for small/3

values the field decay is not sufficient to eliminate reflections from the metal backing. For

large/3 values, the rapid decay can no longer be accurately modeled by the FEM simulation

and consequently the associated VSWR increases to unacceptable values. However, an op-

timum value of/3 which minimizes the reflection coefficient for a given layer thickness and

discretization can found. The parameters/3 and t play complimentary roles and the study

shows that the PML absorber's performance can be characterized in terms of the product

(a scalable quantity when a = 0) and the discretization rate. A two-dimensional analvsis

at and N (the number of samples in thewas carried out to determine the optimum values of

PML layer) for maximum absorption near normal incidence. It was determined that given

a desired reflection coefficient [R[ for the PML absorber, the optimum _ and N values are
,X9

approximately given by the expressions [7]

/3t
- 0.0106IRI + 0.0433

kg

where IRI must be given in dB and N is equal to or exceeding the right hand value. As an

example, if we desire to have a value of IRI equal to -50dB, from the above formulae we
Bt

have that _ _ 0.58 and N = 10. It should be noted that though the design formulae were
derived with c_ = 0 they also hold for small non-zero values of c_.

III. Feed Excitation

Two feed models were used in conjunction with the scattering parameter extraction method.

One was the horizontal current probes (Fig. 2) linking the back PEC wall with the beginning

of a microstrip feed line. About 3 to 5 horizontal probes were needed for convergence and

this scheme proved more accurate that the usual single vertical probe.

The other feeding scheme employed here involved the specification of the quasi-static

TEM mode at the microstrip line port. In the context of the FEM, the excitation is intro-

duced by imposing boundary conditions across the entire cavity cross section through the
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input port. These conditions also serve to suppress backward reflections from the modeled

circuit discontinuity. Consequently, they can be placed close to the discontinuity without

compromising the accuracy of the scattering parameter extraction.

IV. 3D Modeling Examples

The PML performance as predicted by the formulae was investigated by' using it to truncate
the domain of 3-D microwave circuits. For example, Fig. 4 shows the optimum value of

_ _ 0.96 obtained from the above design equations compares well with the results of the full

wave FEM analysis of the microstrip line shown in Fig. 2. The 3-D FEM computations were

carried out using N = 5 for modeling the PML absorber across its thickness and from the

given formulae, it follows that R = -41dB and this agrees well with the optimum value shown

in Fig. 4. Another example is the meander line shown in Fig. 5. For the FEM simulation,

the structure was placed in a rectangular cavity of size 5.Srnrn x 18.0rnrn x 3.175mm. The

cavity was tessellated using 29 x 150 x 5 edges and only 150 edges were used along the y-axis.
The domain was terminated with a 10 layer PML, each layer being of thickness t = 0.12ram.

The 5'11 results are shown in Fig 6 and are in good agreement with the measured data [8].
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Figure 1: Illustration of wave incidence upon a perfectly match interface (PML)

without metal backing.

• C_tty 4 f _Z_-_i_:_

with and

Stnp Wdth - I,/10 -0.7t428cm

Ax,,O.1190Scm

gy-O.1363Ecru

Cavity Cutoff FieqJm_-4.l_-tz.

Ol_r_ Frw_r_y-4.2G_. (_.7.14286cm)

Figure 2: Shielded microstrip line terminated by a perfectly matched uniaxial absorber layer.
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Figure 3: Illustration of the field decay pattern inside the PML layer.
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Figure 4: Reflection coefficient vs 2/3t/,_g with a=l, for the shielded microstrip line termi-

nated by the perfectly matched uniaxial layer.
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Figure 5: Illustration of a meander line geometry used for corn
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Figure 6: Comparison of calculated and measured results for the meander line shown in

Fig.5.
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